
Graph Databases
Илья Малиновский, 444 гр.

27.09.2016

Relational Databases Lack Relationships

1,000,000 users having ~50 friends each

NoSQL Databases Also Lack Relationships

Pitfalls

● No index-free adjacency

● No backward relationships

The Labeled Property Graph Model

● Graph = (nodes, relationships)

● Node = ([properties, labels])

● Relationship =
(name, start -> end[, properties])

● Property = (key, value)

Query Languages

Cypher

START n=node(1)

MATCH (n)<-[:KNOWS]-(x)-[:HAS]->()

RETURN x

Gremlin

g.v(1).in('KNOWS').out('HAS')

.uniqueObject.toList()

https://github.com/jadell/neo4jphp/wiki/Cypher-and-gremlin-queries

https://github.com/jadell/neo4jphp/wiki/Cypher-and-gremlin-queries
https://github.com/jadell/neo4jphp/wiki/Cypher-and-gremlin-queries

Cypher. Example 1

CREATE (emil:Person {name:'Emil'})
<-[:KNOWS]-(jim:Person {name:'Jim'})
-[:KNOWS]->(ian:Person {name:'Ian'})
-[:KNOWS]->(emil)

(specification by example)

Cypher. Example 1. Match
MATCH (a:Person)-[:KNOWS]->(b)-[:KNOWS]->(c), (a)-[:KNOWS]->(c)
WHERE a.name = 'Jim'
RETURN b, c

MATCH (a:Person {name:'Jim'})-[:KNOWS]->(b)-[:KNOWS]->(c),
 (a)-[:KNOWS]->(c)

RETURN b, c

More on Database Projecting. Relational DBs

Normalization

Denormalization

More on Database Projecting. Graph DBs

“what you sketch
on the whiteboard

is typically
what you store

 in the database”

Design for queryability✓

Cypher. Example 2

Cypher. Example 2. Query
MATCH (theater:Venue {name:'Theatre Royal'}),

(newcastle:City {name:'Newcastle'}),
(bard:Author {lastname:'Shakespeare'}),
(newcastle)<-[:STREET|CITY*1..2]-(theater)
<-[:VENUE]-()-[p:PERFORMANCE_OF]->()
-[:PRODUCTION_OF]->(play)<-[:WROTE_PLAY]-(bard)

RETURN play.title AS play, count(p) AS performance_count
ORDER BY performance_count DESC

Cypher. Example 3

Cypher. Example 3, fixed

Nouns = Nodes
Verbs = Relationships

Avoid verbing, i.e.
“emailed”, “CCed”, etc.

More on Data Modeling

What’s inside?
Store files for nodes, relationships, labels, and properties

What’s inside? (2)
Store files for nodes, relationships, labels, and properties

Optimizing O(1)...
● SSDs
● in-memory caching (least frequently used cache policy)

On Higher Levels

Exposes the graph primitives to the user

Harnessing Graph Structure

● Shortest paths (Dijkstra, A*)

● Triadic closures
(predict weak relationships)

● Local bridges
(useful for recommendations)

The Hobbit Graph, or To Nodes and Back Again

https://gist.github.com/kvangundy/c43ade7d259a77fe49a8

https://gist.github.com/kvangundy/c43ade7d259a77fe49a8
https://gist.github.com/kvangundy/c43ade7d259a77fe49a8

MATCH (Hobbiton:Location {name:'Hobbiton'}),
 (LonelyMtn:Location {name:'Lonely Mountain'}),
 Road_to_Smaug = shortestPath((Hobbiton)-[:LOCATED*..15]-(LonelyMtn))
RETURN Road_to_Smaug

http://graphdatabases.com

http://graphdatabases.com/
http://graphdatabases.com/

Why Choose Graph DBs?

● Performance ≠ f(dataset size)
● Accelerated development cycles
● Extreme business responsiveness

